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We introduce an axiomatic thermodynamic theory for the general diffusion
process and prove a theorem concerning entropy and irreversibility: the equiva-
lence among time-reversibility, zero entropy production, symmetricity of the
stationary diffusion process, and a potential condition.
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1. INTRODUCTION

Diffusion processes are important models for many equilibrium and non-
equilibrium phenomena. They are widely considered as a phenomenologi-
cal approach to molecular systems with fluctuations. One of the well-known
examples is the theory of polymer dynamics in an ambient fluid. (2) Recently,
motivated by work on biological motor molecules which convert chemical
energy into mechanical work, (19, 5) it becomes evident that a thermodynamic
theory, both for equilibrium and more importantly for nonequilibrium steady-
state (NESS), can be developed for the general diffusion process. (25, 22) For
more details of the applications of diffusion models and the motivation for
the present mathematical analysis, see ref. 26.
By thermodynamics, we mean the theory that connects key concepts

such as entropy, heat, their respective production and dissipation, and



irreversibility with the stochastic dynamics. The essential difference between
a synthetic polymer and a biological motor-protein is that the former has
zero heat dissipation and entropy production while for the latter they are
positive. (21) It should be noted and as we shall show that while the number
of degrees of freedom in a stochastic model is not necessarily large, the
random collisions with the solvent molecules, modeled by a Wiener
process, provide a sufficient large interacting molecular system in which
thermodynamics is valid.
Heat dissipation and entropy production also play important roles in

the mathematical formulations for the NESS theory motivated by a com-
puter simulation of driven fluids. (3) Numerical observations have led to a
surge of mathematical analyses for NESS as either a dynamical system (34, 14)

or a stochastic process. (11, 12, 1) A unifying mathematical feature of the
entropy production has been established for the axiom-A system, the
diffusion process, and interacting particle systems. (9, 15)

We consider the stochastic models in the form of the stochastic
differential equation

dx
dt
=b(x)+Ct(t), x ¥ Rn (1)

where C is a nonsingular matrix and t(t) is the ‘‘derivative’’ of an
n-dimensional Wiener process. Following the standard polymer theory, (2)

x can be thought of as the coordinates of N ‘‘atoms’’ in a single macromole-
cule who stochastic dynamics in an ambient fluid is assumed to be over-
damped. (26) Hence n=3N. The corresponding Fokker–Planck equation is

“u
“t
=Lgu(t, x) ¸ N ·11

2
A(x) Nu−b(x) u2 , (A=CCT) (2)

u(0, x)=f(x) (3)

whereLg denotes the adjoint of operatorL.
In mathematics, ref. 31 gave the first rigorous result on irreversibility

and entropy production for the case of discrete-state Markov chains. A
comprehensive treatment of this case is ref. 10. For the general diffusion
process with bounded coefficients A(x) and b(x), related results were
announced in refs. 32 and 33 using Girsanov formula. This approach,
however, is not valid for the most applications with unbounded A(x) and
b(x) on Rn. For linear b(x) in Eq. (1), the mathematical task is significantly
simplified and the diffusion process is also Gaussian. (22) A related study of
interacting particle systems can be found in ref. 16.
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This paper focuses on the nonlinear stochastic differential equation (1).
We assume:

(1) A(x)={aij(x)}, b(x)={bj(x)} are smooth;

(2) N · b(x) [ m0, where m0 is a constant;

(3) uniformly elliptic condition;n
i, j=1 aij(x) titj \ r;n

i=1 t
2
i , -t ¥ Rn,

where r is a positive constant.

The paper is organized as follows. Section 2 provides heuristically the
essential elements of the thermodynamic theory of diffusion (25, 22) including
the definitions for entropy production rate and time-reversibility. It als
states our main theorem on the thermodynamics of diffusion process. In
order to provide a mathematically rigorous proof for the theorem, specifi-
cally to obtain the self-adjoint property in Eq. (13), Section 3 gives a
summary for the relevant mathematical results and notations on the
general diffusion process without proof. (36, 28, 29) With unbounded aij(x) and
b(x) on Rn, the standard method of integration by parts is not applicable.
Finally in Section 4, the equivalence among time-reversibility, zero entropy
production rate, symmetricity, and potential condition is established for the
general minimal diffusion process. The paper concludes with Section 5.
A mathematically more complete version of the present paper can be found
in ref. 27.

2. THE THERMODYNAMIC FORMALISM OF THE DIFFUSION

PROCESS

The most important concepts in thermodynamics are mechanical
work, heat, and entropy. The thermodynamic theory of the diffusion
process provides mathematical definitions for these three quantities. The
entropy has the well-known definition e[P]=>Rn P(t, x) log P(t, x) dx
which is a functional of the probability density P(t, x), the solution to
Eq. (2). For more discussion on the Gibbs entropy and its physical
interpretation, see ref. 23. The concept of mechanical work, energy and its
dissipation are stochastic according to our model. They are related by
energy conservation. Hence there is a functional of the diffusion trajectory
x(t): W(t)=> t0 F(x) p dx(s) where F(x)=2A−1(x) b(x) and p denotes the
Stratonovich integral. (12) The mean heat dissipation rate (hdr), thus, is the
expectation limtQ. E[W(t)/t]=>Rn F(x)J dx, which is the product of
force F(x) and probability flux

J=− 12 A(x) NP(t, x)+b(x) P(t, x)
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The force F(x) in turn is the product of frictional coefficient (2A−1) and
velocity b(x).
The rate of the increase of entropy is then

ė[P]=epr−h dr (4)
where

epr=F
R
n
2(JA−1(x)J) P−1(t, x) dx

It is meaningful from thermodynamics point of view to identify the first
term in Eq. (4) with the entropy production rate. In a time independent
NESS, ė=0, and the entropy production is balanced by the heat dissipa-
tion. Eq. (4) is the well-known equation for entropy balance. It is the
central hypothesis of nonequilibrium thermodynamics.(18) The diffusion
theory, therefore, provides the nonequilibrium thermodynamics with a
mesoscopic equation of motion (Eq. (1)).
If the force F(x)=−NU(x) is conservative, W(t) is bounded almost

surely. In this case one can further introduce Helmholtz free energy h[P]=
u[P]−e[P] in which u[P]=>Rn U(x) P(x) dx is the internal energy and
u̇=−h dr, as expected due to energy conservation. Then ḣ=−epr [ 0 with
the equality hold true for an equilibrium process. This is the second law of
thermodynamics applied to isothermal processes with canonical ensembles.
For nonconservative force F(x) without a potential,W(t) increases without
bound, and the free energy can not be defined. In this case, one writes the
force in terms of Helmholtz–Hodge decomposition: F(x)=−Nf+c(x)
where the c is related to the circulation of the irreversible process. (31, 19, 30)

There is a geometric representation for the energy conservation as well. It
can be shown that solving the stationary solution to Eq. (2) is equivalent to
requiring (7)

N · c−Nf · c=0 (5)

Then F(x) p dx=−df+c p dx where the term on the left is work, and the
terms on the right are mechanical energy and dissipated heat, respectively.
Finally, Eq. (5) is also a generalization of the Tellegen theorem, i.e., if
N · c=0, then Nf · c=0. (10, 35)

Lebowitz and Spohn (12) also studied the generating function ofW(t) in
term of the theory of large deviations: the limit

lim
tQ.
− 1t log E[e

−lW(t)]

is convex and possesses a certain symmetry with respect to l. It is zero for
equilibrium W(t), and the symmetry generalizes positivity of hdr (=epr) in
NESS.
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The fundamental theorem of our thermodynamic theory is the math-
ematical equivalence between the time-reversibility and vanishing entropy
production for the diffusion process (Theorem 1). We have the definitions
for entropy production rate and time-reversibility:

Definition 1. The entropy production rate, epr, of a stationary
diffusion process defined by Eq. (1) is

1
2 F (N log P(t, x)−2A−1b(t, x))T A(N log P(t, x)−2A−1b(x)) P(t, x) dx

In the stationary case, P(t, x)=w(x).

Definition 2. A stationary stochastic process {x(t); t ¥ R} is time-
reversible if -m ¥N and every t1, t2,..., tm ¥ R, the joint probability
distribution

P(x(t1), x(t2),..., x(tm))=P(x(−t1), x(−t2),..., x(−tm))

We now state the main theorem:

Theorem 1. For the stationary diffusion process defined by Eq. (1),
the following four statements are equivalent:

(i) The process is time-reversible;

(ii) Its corresponding elliptic operator Lg is symmetric on C.0 (R
n)

with respect to a positive function w−1(x), w(x) ¥ L1(Rn), i.e., >Rn w(x)
dx <.;

(iii) The process has zero entropy production rate (epr);

(iv) The force F(x)=2A−1(x) b(x) has a potential function.

3. SOME RELEVANT MATHEMATICAL RESULTS

We denote

C(Rn)={bounded continuous function f(x)}

C0(Rn)={f ¥ C(Rn) | lim
|x|Q.

f(x)=0 uniformly}

||f(x)||=sup
x ¥ R

n
|f(x)|

|| · || is the norm on C(Rn) and C0(Rn)
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The conjugate of the Fokker–Planck equation (2) is the Kolmogorov
backward equation:

“u(t, x)
“t

=Lu(t, x)=
1
2

C
n

i, j=1
aij(x)

“
2u

“xi “xj
+C

n

i=1
bi(x)

“u
“xi

(t > 0, x ¥ Rn)
(6)

For the solutions to Eqs. (2) and (6), we have the following theorems:

Theorem 2. If the coefficients of Eq. (6) satisfy assumptions (1)
and (3), then there exists a Banach space Ĉ(Rn), C0(Rn) … Ĉ(Rn) … C(Rn),
and the positive semigroup T(t) generated by the solution to the Cauchy
problem (2) and (3) with initial data f(x) exists in Ĉ(Rn).

The minimal solution to the Kolmogorov backward equation then is
T(t) f. Solution uniqueness actually does not hold true for general aij(x)
and bi(x). The next theorem is about the Kolmogorov forward equation
and the relation between the solutions to the two equations.

Theorem 3. If the coefficients of Eq. (2) satisfy the assumptions (1),
(2) and (3), then there exists a Banach space C̃(Rn),C0(Rn) … C̃(Rn) … C(Rn),
and -g ¥ C̃(Rn), the solution of the Cauchy problem (2) and (3) with
initial data g(x) exists in C̃(Rn), which is denoted by T̃(t) g. Furthermore,
-f, g ¥ C0(Rn)

F (T(t) f) g dx=F f(T̃(t) g) dx (7)

The proof for Theorems 2 and 3 is based on and expands the classic
work. (4, 17) The essential steps are

(i) -n ¥N (the positive integers) on the bounded sphere Bn ¸
{x ¥ Rn | |x| [ n}, one solves the elliptic equation.

(ii) By taking monotone limit of the above, -l > 0 and -f ¥ C(Rn),
define Rn(l) f=un on Bn with 0 elsewhere. un is the solution to (l−L) u
=fgn with boundary condition u|“Bn=0. gn(x): R

n
Q R, is a sequence of

smooth functions ¥ C.0 (R
n) with gn(x)=0 for x ¨ Bn. Then as the limit of

Rn(l) with nQ., the resolvent operator R(l): C(Rn)Q C(Rn), satisfying
-f ¥ C(Rn), (l−L) R(l) f=f in Rn and ||R(l)|| [ 1

l ;
(iii) Using R(l), define a Banach space Ĉ(Rn), satisfying C0(Rn) …

Ĉ(Rn) … C(Rn);
(iv) The resolvent operators of L in Ĉ(Rn) satisfy the conditions of

Hille-Yosida theorem. (37) Hence we obtain the semigroup generated by L

which is the solution to the Cauchy problem (3) and (6).
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(v) Lgu in Eq. (2) contains a term −N · (b(x) u(x)), so the assump-
tion (2) in Section 1 is required to apply the above steps to prove Theorem 3,
which leads to its respective C̃(Rn).

For the T(t) and T̃(t) obtained above we have the following theorems:

Theorem 4. -t > 0, x ¥ Rn, there is a regular measure p(t, x, dy),
called transition function, which satisfies:

(1) T(t) f(x)=> p(t, x, dy) f(y), -f ¥ C0(Rn);
(2) Setting C ¥B, a Borel field generated by Rn, p(t, x, C) is a Borel

measurable function;
(3) The transition functions satisfy the Kolmogorov–Chapman

equation

p(t+s, x, C)=F p(t, x, dz) p(s, z, C) a.e.

(4) For T̃(t), there also exists a family of measure p̃(t, x, dy), satisfy-
ing the same property as p(t, x, dy); and

p̃(t, x, dy) dx=p(t, y, dx) dy (8)

The following two theorems state the existence of a positive invariant
probability density.

Theorem 5. If 1T >T0 T(t) f(x) dt does not converge to 0 for every
f ¥ C0(Rn), x ¥ Rn, then there exists a positive linear functional L on
Ĉ(Rn), which is invariant under T(t): L(T(t) f)=L(f). And corresponding
to L, there is a regular measure h(dx), satisfying

F T(t) f(x) h(dx) [ F f(x) h(dx) f ¥ C0(Rn)f \ 0

Furthermore h(dx) has a density h(x) > 0.

Theorem 6. Under the conditions of Theorem 5, h(x) is invariant
under T(t):

F p(t, x, dy) h(dx)=h(dy)

Since T(t) has a family of transition functions p(t, x, dy) and an
invariant measure h(dy), one can construct a stationary Markov process by

Thermodynamics of the General Diffusion Process 1135



Kolmogorovtheorem,whose transitionprobability functionsare{p̃(t, x, dy)}
and the initial distribution is h(dx). Furthermore, Theorems 5 and 6
together actually shows a weak form of the Foguel alternative given in
ref. 13 where diffusions with bounded coefficients A(x) and b(x) are
considered.

4. TIME-REVERSIBILTY AND ENTROPY PRODUCTION

We now establish the equivalence in Theorem 1.

Proof.

(i)2 (ii). This result is known to physicists. The proof for a discrete
state Markov process is due to Kolmogorov. According to the definition
of reversibility, with the transition function p̃(t, x, dy) and the positive
stationary measure h(x), we have -A, B ¥B

F
B
F
A
p̃(t, x, dy) h(y) dx=F

A
F
B
p̃(t, y, dx) h(x) dy

By the standard method in probability, this leads to

F
B
F
A
f(x) p̃(t, x, dy) k(y) h(y) dx=F

A
F
B
k(y) p̃(t, y, dx) f(x) h(x) dy

(9)

where f(x), k(x) ¥ C.0 (R
n). Differentiating both sides of (9) with respect to

t at t=0, we have

F
R
n
f(x)Lg[h(x) k(x)] dx=F

R
n
k(y)Lg[h(y) f(y)] dy

Let f(x)=h(x) f(x) and g(x)=h(x) k(x), then f and g are two arbitrary
functions in C.0 (R

n). Since h(x) > 0,

F
R
n
h−1(x) f(x)Lg[g(x)] dx=F

R
n
h−1(y) g(y)Lg[f(y)] dy

Therefore, the operator Lg is symmetric with respect to the reciprocal of
its stationary distribution h(x): w(x)=h(x).

(ii)2 (iii). The differential operatorLg can also be rewritten as

Lgf=1
2 N · (ANf)−(Nf) · b(x)−fN · b(x)
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The statement (ii) is

F eUg(x)Lg[f(x)] dx=F eUf(x)Lg[g(x)] dx

in which the positive w(x)=e−U, f and g ¥ C.0 (R
n) are arbitrary functions.

This leads to

F eUg(12 N · (ANf)−(Nf) · b(x))dx=F eUf(12 N · (ANg)−(Ng) · b(x)) dx

Through integration by part, the first term on the left-hand-side (and
similarly for the right-hand-side)

F eUgN · (ANf) dx=−F eU(Ng) A(Nf) dx−F eUg(NU) A(Nf) dx

and we have

F eUg(12 (NU) A(Nf)+(Nf) ·b(x)) dx=F eUf(12 (NU) A(Nf)+(Ng) ·b(x)) dx

By a simple rearrangement, we have

F eU(gNf−fNg) · (12 ANU+b(x)) dx=0

Since f and g are arbitrary, we have 1
2 ANU+b(x)=0 in which U=

−log w. Therefore

N log w(s)−2A−1b(x)=0

which means epr=0.

(iii)2 (iv). The statement epr=0 leads to

1
2 ANh(x)−b(x) h(x)=0 (10)

in which h(x) is positive. Hence we have 2A−1(x) b(x)=N ln h(x). That is
F(x) has a potential function.

(iv)2 (i). The equivalence between the potential condition, the
symmetricity of the differential operator, and the time-reversibility are
widely known to physicists. The usual proof involves integration by
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parts. However, for the unbounded aij(x) and b(x) on Rn, boundary term
vanishing becomes a delicate issue. Thus we use the results and notations
given in Section 3 to circumvent the difficulty.
From the potential condition, i.e., Eq. (10) we know

Lgh=N · (12 ANh−b(x) h)=0 (11)

With Eqs. (10) and (11), the operators Rn(l), R(l) in Theorem 2 and their
corresponding R̃n(l), R̃(l) have properties as follows.
First, hRn(l)(k)=R̃n(l)(hk), where k ¥ C

.

0 (R
n). This is because

Lg(hRn(l)(k))

=1
2 hN ·AN(Rn(l)(k))+hb(x) ·N(Rn(l)(k))

+12 Rn(l)(k) N ·ANh−Rn(l)(k) b(x) ·Nh−Rn(l)(k) hN · b(x)

+N(Rn(l)(k)) ·ANh−2hN(Rn(l)(k)) · b(x)

=hL(Rn(l)(k))+Rn(l)(k)Lg(h)+(N ·Rn(k))(ANh−2hb(x))

and Eq. (11) which leads to Lg(hRn(l) k)=hLRn(l)(k). Thus hRn(l) k
satisfies

˛ (l−L
g)(hRn(l) k)=h(l−L) Rn(l)(k)=hkgn in Bn

hRn(l)(k)|“Bn=0

According to the uniqueness of the solution in Bn,

hRn(l)(k)=R̃n(l)(hk) (12)

Second, from (12), -j, k ¥ C.0 (R
n)

F kgnR̃n(l)(hj) dx=F
Bn
kgnhRn(l)(j) dx

=F
Bn
(l−Lg) R̃n(l)(kh) Rn(l)(j) dx

=F
Bn
R̃n(l)(kh)(l−L)(Rn(l)(j)) dx

=F
Bn
R̃n(l)(kh) jgn dx

=F
Bn
R̃n(l)(kh) jgn dx
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Let nQ., since k, j have compact support,

F kR̃(l)(hj) dx=F jR̃(l)(hk) dx

According to the theory of Laplace transformation, from the fact that
kT̃(t)(hj), and jT̃(t)(hk) are continuous with t, we have

F kT̃(t)(hj) dx=F jT̃(t)(hk) dx (13)

This leads to

FF k(x) p̃(t, x, dy) h(y) j(y) dx=FF j(y) p̃(t, y, dx) h(x) k(x) dy

The standard method of measure theory leads to

F
A
F
B
p̃(t, x, dy) h(y) dx=F

B
F
A
p̃(t, x, dy) h(y) dx

which means reversibility. L

5. CONCLUSIONS

We have provided the general diffusion process defined by nonlinear
stochastic differential equations (1) with an axiomatic thermodynamic
structure in a rigorous mathematical setup. We have introduced funda-
mental physical concepts of work, heat, entropy, entropy production, and
time-reversibility. We demonstrate the fundamental principle of irreversi-
bility by proving the equivalence between time-reversibility, vanishing
entropy production, symmetricity of the stationary Markov process, and a
potential condition. In a recent work on certain non-Markovian Gaussian
processes, (20) it has been suggested that the equivalence between time-
reversibility and equilibrium requires some additional conditions. A rigorous
mathematical treatment of this problem remains to be developed.
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